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New relations between the Clebsch-Gordan coefficients 
of SU(2) 

J Kulesza and J Rembieliriski 
The Institute of Physics, University of Lodz, 90-136 Lodz, Narutowicza 68, Poland 

Received 31 May 1979, in final form 29 August 1979 

Abstract. Some unknown bilinear relations between the SU(2) Clebsch-Gordan 
coefficients are given. The derivation is based on the analysis of the triplet P 3 L 2 SO(3) 
(Poincark, Lorentz and rotation group). The form of the covariant p,-dependent functions 
with fixed maximal degree with respect to pr is given. 

1. Introduction 

In this paper we derive some unknown bilinear relations between the Clebsch-Gordan 
coefficients of the SU(2) group. These relations can be applied to the analysis of the free 
field equations (Rembieliriski 1980) and especially to the construction of the covariant 
p,-dependent functions with fixed maximal degree with respect to the four-momentum 
p,.  The derivation is based on the notion of the commutant X ,  of the representation 
D(R,) = D ( R ) J  R,. Here D ( h )  is a (in general, reducible) representation of the 
Lorentz group L ( h )  while R, is the little group of the four-momentum p ,  with p 2  > 0. 
As is well known, in this case R, is isomorphic to SO(3) - SU(2). The elements X ( p )  of 
the commutant X ,  = { X ( p ) }  are defined by the equation 

X M p )  = D ( N X ( p ) D ( h - ' )  (1) 

[ X ( P ) ,  D(R,)I= 0. 

i.e. for A €  R, 

From Weyl's theorem (Weyl 1939) it follows that the set X ,  forms the associative 
algebra which is the direct sum of the mutually orthogonal subalgebras Xi according to 
the decomposition D ( R )  = ONS9 ' (R) .  Here s and N, denote spin and multiplicity of 

the irreducible representation 9' of the SU(2) in D. Moreover, in each subalgebra XS, 
there exists a basis {XS,, ( p ) }  with the multiplication law 

(2) 
Here the indices i, k,  j ,  1 denote equivalent irreducible representations of the R, with 
fixed s. The operators XS,k intertwine these representations. The irreducible subspaces 
of R, can be numbered by triplet [ (A,  B ) a ]  where a distinguishes the equivalent 
representations DAB of the Lorentz group (A,  B integer or half-integer) contained in 
D, i.e. 

S 

xf,k (p)xs,; ( p )  = ~ " " ~ k , ~ ~ , ,  

XS,, ( p )  = XT~A,s)al,[(A',B')a'l ( P ) .  (3) 
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This follows from the fact that the representations 53' occur in DAB with multiplicity 
one. Note that the base elements (3) are homogeneous with respect to p,+ with 
homogeneity degree zero (see equation (2)), i.e. they are dimensionless. 

The degree with respect to p,+ (not homogeneity degree!) of the dimensionless 
operator X ( p )  will be denoted below by r ( X ) .  For example 

r ( g W y )  = r(y,) = 0 r (  +) = r (  1-4, = 1 etc. 
' i P  

It is easy to see that the following rules hold: 

if r ( M )  = 0 and M is invertible; 

r ( X ( p ' ) )  = r ( X ( p ) )  

where p '  = ( p o ,  Rp),  R E SO(3). 

( 4 4  

2. The basic formulae 

In this and the next section we present a sketch of the derivation of the above- 
mentioned relations between the Clebsch-Gordan coefficients. To avoid misunder- 
standing we recall that the SU(2) Clebsch-Gordan coefficients are denoted 
by (ABablsm) where a = -A, -A + 1, . . . , A ,  b = -B, -B + 1 , .  . . , B, m = a + 6,  
IA - B /  s s s (A + B ) ;  in the other cases (ABablsm) = 0. We adopt the real phase 
convention (Edmonds 1957). 

Let us consider a dimensionless operator X (  p )  E X,. It can be expanded in the base 
{X;A,B)a],[(A',B')a'l ( P I )  as follows: 

where the coefficients w ~ ~ A , B ) ~ ] , [ ( A ' , B ' ) ~ ' I  are p,-independent. On the other hand, 
denoting by r I k A S B )  the projectors on the irreducible representations DAB, we can 
rewrite X (  p )  in the form 

In the following we will investigate the condition 

r ( X ( p ) )  4 1 (7) 

where 12 0 is an integer. Because r ( r I k A 3 B ) )  = 0 then from equations (4a),  (5) and ( 6 )  we 
see that the condition (7) is satisfied if and only if the relations 

hold for all [(A, B ) a ]  and [(A',  B')a ']  (s varies from max(1A - B / ,  1A'- B'I) to 
min((A +B) ,  (A '+B' ) ) ) .  
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Because of the relation (4d), we can rotate in X ( p )  the argument pI1 in the direction 
of the z axis, i.e. ( p o ;  p )  + ( p o ;  0, 0, lpl) = qF. Next we calculate the matrix elements of 
the operator X s ( A , B ) o l ] , [ ( ~ ’ , ~ ‘ ) a ’ ]  (4); we omit the inessential indices a and a’ .  We denote 
by IABab) the (standard) base vectors which span the representation space of DAB 
(a  = -A, -A A 1 , .  . . , A, b = -B, -B + 1, . , , , B) .  We obtain 

(ABab ~ X ~ A ~ , B ~ I , [ A ~ , B ~ I  (q)IA’B‘a’b‘) 

= (ABab ~ D ( A ~ ) X ~ A ~ , B ~ ] , [ A ~ , B ~ ]  (kP(A,’)lA’B‘a’b’) 

= ( A B ~ ~ ~ X ~ A ~ , B ~ I , [ A ~ . B ~ I  (k)lA’B’a’b’) exp{[(a’- a )  - (b’ -  b)lO}. (9) 
Here k = Ai’q = (47; 0, 0,O) and the boost A, is represented by 

D(A,) = exp[-i(q/lp/)KO] = exp(-iOK3) 

where sinh 6’ = I p / / J 7  and Ki are the generators of the Lorentz boosts. 
Note that the X [ A , B I , [ A J , ~ ’ I  ( k )  are p F  -independent because they intertwine 

equivalent irreducible representations of the static (rest frame) SO(3). Consequently 
the operator XfAl,BI] , [AZ,B2] ( k )  has the form 

where Ism) are the eigenvectors of the J3 and 5’. From equations (9) and (10) we have 

(ABab IX~A~,B~] , [A~ ,B~]  (q)lA’B’a’b‘) 

where E ( X )  is the sign function. Therefore the conditions (8) are equivalent to 

1 2 WfA,B],[a, ,B’] (ABablsm)(A’B’a’b’/sm) = 0 
s m = - s  

for a and a’ satisfying the inequality 21a - a ‘ /  > 1. From equation (1 1) it follows that the 
maximal degree of the operator 

X[A,B],[A’,B’] ( p )  = c ~ f A , B l , [ A ’ , B ’ l ~ ~ A A , B l , [ A ’ , B ’ l  (17) 
S 

introduced in equation (8) (we omit the indices a, a’) is equal to 

I,,, = 2min((A +A’),  (B  +B’)).  (13) 
Because for fixed [A, B ]  and [A’, B‘] the product 2 / a  - a’l in equation (1 1) is only odd or 
only even, then the minimal degree lmin is given by 

lmin = 2max(lA -A’l, IB -B’l). (14) 
Note that 

5(lmax-lmin) 1 =min((A+A‘) ,  ( B  +B‘))-max(lA-A’l, lB -B$ 

= min((A + B ) ,  (A’+B’))-max(lA -B1, lA‘-B’l). 
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3. The derivation 

Let us consider the case when in the inequality (8) 1 acquires its lowest value, namely 

r ( X g y B ] , [ A ' , B ' ]  = lmin  (15) 

where 

X g ? B ] , [ A ' , B ' ]  1 W ~A.B],[A' ,B' l , , ,XsA,B],[A' ,B']  
S 

and, as before, s varies from max(lA -Bl, lA'-B'l) to min((A + B ) ,  ( A ' + B ' ) ) .  As is 
well known (see, for example, Barut and Rgczka 1977) the relativistic spin operator 
g : A , B )  has the form 

where S,, are the Lorentz generators in the representation DAB.  Consequently 

r ( 9 f A . B ) )  = 2 .  (16) 

Because 

s = ~ ~ - ~ l  

then for X $ B ] , [ A ' , B , ]  satisfying equation ( 1 5 )  the operators 

xk = ( S 1 f A , B ) ) k X ; n A ~ B ] , [ A ' , B ' ~  = [S(s + l ) l k W s A , B ] , [ A ' , B ' ] , , , X S  [A,BI , [A' .B' l ,  ( 17 )  
S 

1 where k = 0, 1, , . . , ?(lmaX- l,,,), are linearly independent. To prove this we note that 
there must exist a set of the linearly independent operators Xo, X I ,  . . . , X I  of the form 
( 1 7 ) .  If Xt t l  is linearly dependent on Xo, X 1 ,  . . . , XI, then it is easy to see that every 
X,,,  for n = 1 ,2 ,3 ,  . . . is linearly dependent too. If we take this fact into account, then 
from the form of the transformation matrix 

T = [TSk [S(S f l ) l k W S A , B ] , [ A ' , B ' ] _ , . l  

it follows that the number of non-vanishing coefficients W S A , B ] , [ A ' , B ' ] _ , ,  is equal to t + 1. 
Therefore T is a square matrix and must be invertible. So we can expand the 
intertwining operators XfAA,B1, [A' ,B'I  in terms of the xk, k = 0, 1, . . . , t, i.e. 

X f A , B ] . [ A ' , B ' ]  2 askxk. 
k = O  

Then from equations (4a, b ) ,  (15), (16) and (17 )  we have 

But from equation (11) it follows that r ( X f A , B ] , [ A ' , B ' ] )  = l,,,. Therefore 

t = i(1max - 1min) (18) 

because the number of base Operators X f A . B ] . [ A ' , B ' ]  is equal to 1 +i(lmax- lmin). 
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Note that the linear independence of the x k  for k = 0, 1 ,  . . . , :(lmax-Imin) implies 
that 

r ( ( ~ 2 ) k X g ~ B ] , [ A ' , B ' ] )  = 2k  + lmin .  (19) 

Consequently, the most general form of the operator satisfying the inequality (8) is the 
following: 

i.e. from equations (8) and (17) we have 
;+Im,") 

W[A,B],[A',B'] = 1 A [kA,Bl,[A',B'] [s(s f l)]kwi'A,B],[A',B'],,n. (20b)  
k = O  

Here the coefficients A are s-independent. 

product X ~ f l B ~ , [ A ' , B ' ] X ~ n B ' ] , ~ A , B ]  where 
Now we determine the coefficients W[A,B],[A',B'],,,. To do this let us consider the 

where ayk are undetermined constants. Similarly we get the analogous formula for the 
product X ~ n s ' ] , [ A , B ] X ~ f l B ] , [ A ' , B ' ] .  Furthermore, if we restrict ourselves for simplicity to 
the special case A 2 B , A ' 2 B f ,  ( A + B ) a ( A ' + B ' )  and ( A - B ) a ( A ' - B ' )  then from 
these formulae we obtain 

(22 )  

for ( A - B ) < s s ( A ' + B ' )  and 

? AS is well known, under the paritytransformation DAB + D B A ,  i.e. X ~ . B ~ . [ A ~ . B ~ ]  + x ' ~ B , A ] , r B ' , A ' ] ~  

Moreover, under the Dirac conjugation o A B ( ~ )  = ~ ~ ~ ( i i - ' )  and consequently x s A , B ] . [ A ' , B ' ]  = X[B' ,A ' ] . [B,A]  

(for details see Rembielihski 1980). On the other hand, the coefficients W ~ A , B ] , [ A * , B ' ] , , ,  can be chosen real. 
Therefore X$!'B,l,[A,Bl can be obtained by the parity transformation and Dirac conjugation from 

f Because Xc:B] , [A,B]  -n'"'"', equation (19) implies that T ( ( $ A , B ) ~ ~ )  = 2k and therefore r ( ( S ^ $ , B ) ) k )  5 

21mi, for k = 0,  1, , . . , lmin. From equation (20a) we see that XLmzl Q ~ ( S & , ) ~  is the most general form of the 
operator with degree less or equal to 21min. 

Xmin 
[A.Bl.[A' .B' l .  
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for (A’+ B’) < s s (A + B) and (A’ - B‘) s s < (A - B) .  The equations (23) determine 
2(A -A’) coefficients (Yk (we can choose a. = 1) and it is immediately shown that the 
solutions of the equations (21)-(23) have the form 

M-1 

i=o 
x I-I [s(s + 1) - (so+ l ) ( so+ I + 1)I1I2 (24) 

whereN = l(A + B ) -  (A’+ B‘)l ,M = 1 IA - BI - IA’-B’I 1, s, = max((A + B), (A’+B’)) ,  
so=min(lA-B(,  lA’-B‘l). 

Thus from equations (12) and (24) we obtain that for every a and a’ obeying 
la -a’/ > $lmin the following relations hold: 

i { ”rl’ [(s, - k ) ( s ,  - k + 1) -s(s  + 1)]1/2 
s m=-s k = O  

i 
M-1 

X fl [s(s + 1) - ( s o +  l ) ( so+ 1 + 1)1”2(ABablsm)(A’B’a’b‘lsm) = 0. 
i=o 

More general formulae can be obtained with use of the equations (20). They are listed 
below. 

(i) If A 2 B and A‘  2 B‘ or A < B and A’ < B’ then for each pair a, a’ obeying 

la -a ’ \  > no+ n (25) 

where no = max(1A -A’l, 1B - B’I} =$lmin and n = 0, 1 ,2 ,3 ,  . . . , the following formula 
is valid: 

N - l  c i { [s(s + 1)l” I7 [(s, - k ) ( s ,  - k + 1) - s(s + 1)]1/2 
s m=-s k = O  

i M-1 

X n [s(s + l)-(so+I)(s0+1+1)1”~(ABab/sm)(A’B’a’b’~sm) = O .  
l = O  

(ii) If A > B and A’  < B’ or A < B and A’ > B’ then for each pair a, a’ obeying the 
inequality (25) we have (a) for A + B and A’  + B’ both integer: 

s ,=--SI i = O  

N-1 
x [(s, - k ) ( s ,  - k + 1) -S(S + 1)]’12 

k = O  

M-l 

x i=o n [s(s + l)-(so+l)(so+l+1)]1~2(ABablsm)(A’B”b’~sm)} = O  

(27) 
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(b) for both A + B and A’+ B’ half-integer: 

(28) 
Note that for A =A’, B = B’, n = 0 we get from ( 2 6 )  the orthogonality relation. 

Finally we remark that the equation (1) in fact defines the p,-dependent, Lorentz 
covariant functions. For this reason the equations ( 5 ) ,  (7), (12), (26 ) ,  (27) and (28) 
determine the form of such functions (also with homogeneity degree different from 
zero) in terms of the base elements of the commutant X,. These base operators can be 
determined in each fixed case (for details see Rembieliriski 1980). 

I M-1 

f = O  
x n [s(s + 1) - (so+ l ) ( sO+ I + 1)]1’2(ABabIsm)(A’B’a’b’/sm) = 0. 
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